skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hart, Cacie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report our studies of the thickness dependence of electrical resistivity and lattice constants in strained epitaxial thin films of calcium manganese oxide. Our results indicate the potential of bi-axial lattice mismatch strain as a handle for modulating electrical resistivity. We observe thickness dependence of lattice constants consistent with what is expected for strain relaxation for films thicker than 400 Å. At lower thickness values, anomalies are observed suggestive of reduced oxygen stoichiometry. We observe a remarkable decrease in electrical resistivity with decreasing film thickness. The resistivity of our thinnest films (5–7 nm) is about three orders of magnitude lower than the resistivity of bulk CaMnO3. Resistivity increases as the film thickness increases, along with the progression of strain relaxation. It is noteworthy that the thickness dependence of resistivity we observe in CMO thin films is the opposite of what has been reported for their hole-doped rare earth manganite counterpart La0.67Ca0.33MnO3 (LCMO), where tensile lattice mismatch strain suppresses metallicity, leading to the increase in resistivity with film thickness. We believe that the enhanced conductivity in our thinnest films is related to the possible oxygen deficiency promoted by tensile strain. Recent x-ray absorption measurements have revealed reduced oxygen content and associated changes in Mn valence states in tensile-strained CMO thin films, as also predicted by density functional theory calculations. This report is the first observation of electrical transport behavior possibly indicative of strain–oxygen stoichiometry coupling. 
    more » « less
  2. null (Ed.)
    Microfabrication and assembly of a Three-Dimensional Microneedle Electrode Array (3D MEA) based on a glass-stainless steel platform is demonstrated involving the utilization of non-traditional “Makerspace Microfabrication” techniques featuring cost-effective, rapid fabrication and an assorted biocompatible material palette. The stainless steel microneedle electrode array was realized by planar laser micromachining and out-of-plane transitioning to have a 3D configuration with perpendicular transition angles. The 3D MEA chip is bonded onto a glass die with metal traces routed to the periphery of the chip for electrical interfacing. Confined precision drop casting (CPDC) of PDMS is used to define an insulation layer and realize the 3D microelectrodes. The use of glass as a substrate offers optical clarity allowing for simultaneous optical and electrical probing of electrogenic cells. Additionally, an interconnect using 3D printing and conductive ink casting has been developed which allows metal traces on the glass chip to be transitioned to the bottomside of the device for interfacing with commercial data acquisition/analysis equipment. The 3D MEAs demonstrate an average impedance/phase of ∼13.3 kΩ/−12.1° at 1 kHz respectively, and an average 4.2 μV noise. Lastly, electrophysiological activity from an immortal cardiomyocyte cell line was recorded using the 3D MEA demonstrating end to end device development. 
    more » « less